(support-matrix)= # Support Matrix TensorRT-LLM optimizes the performance of a range of well-known models on NVIDIA GPUs. The following sections provide a list of supported GPU architectures as well as important features implemented in TensorRT-LLM. (support-matrix-hardware)= ## Hardware The following table shows the supported hardware for TensorRT-LLM. If a GPU is not listed, it is important to note that TensorRT-LLM is expected to work on GPUs based on the Volta, Turing, Ampere, Hopper, and Ada Lovelace architectures. Certain limitations may, however, apply. ```{eval-rst} .. list-table:: :header-rows: 1 :widths: 20 80 * - - Hardware Compatibility * - Operating System - TensorRT-LLM requires Linux x86_64 or Windows. * - GPU Model Architectures - - `NVIDIA Hopper H100 GPU `_ - `NVIDIA L40S GPU `_ - `NVIDIA Ada Lovelace GPU `_ - `NVIDIA Ampere A100 GPU `_ - `NVIDIA A30 GPU `_ - `NVIDIA Turing T4 GPU `_ - `NVIDIA Volta V100 GPU `_ (experimental) ``` (support-matrix-software)= ## Software The following table shows the supported software for TensorRT-LLM. ```{eval-rst} .. list-table:: :header-rows: 1 :widths: 20 80 * - - Software Compatibility * - Container - [23.10](https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html#framework-matrix-2023) * - TensorRT - [9.2](https://docs.nvidia.com/deeplearning/tensorrt/release-notes/index.html) * - Precision - - Hopper (SM90) - FP32, FP16, BF16, FP8, INT8, INT4 - Ada Lovelace (SM89) - FP32, FP16, BF16, FP8, INT8, INT4 - Ampere (SM80, SM86) - FP32, FP16, BF16, INT8, INT4(3) - Turing (SM75) - FP32, FP16, INT8(1), INT4(2) - Volta (SM70) - FP32, FP16, INT8(1), INT4(2) * - Models - - [Arctic](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/arctic) - [Baichuan](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/baichuan) - [BART](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec) - [BERT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/bert) - [BLOOM](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/bloom) - [ByT5](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec) - [ChatGLM](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/chatglm) - [DBRX](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/dbrx) - [FairSeq NMT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec) - [Falcon](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/falcon) - [Flan-T5](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec) (4) - [Gemma](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gemma) - [GPT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gpt) - [GPT-J](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gptj) - [GPT-Nemo](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gpt) - [GPT-NeoX](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gptneox) - [InternLM](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/internlm) - [LLaMA](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama) - [LLaMA-v2](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama) - [LLaMA-v3](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama) - [Mamba](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/mamba) - [mBART](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec) - [Mistral](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/mixtral) - [MPT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/mpt) - [mT5](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec) - [OPT](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/opt) - [Phi-1.5/Phi-2/Phi-3](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/phi) - [Qwen](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/qwen) - [Qwen-VL](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/qwenvl) - [RecurrentGemma](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/recurrentgemma) - [Replit Code](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/mpt) - [RoBERTa](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/bert) - [SantaCoder](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gpt) - [Skywork](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/skywork) - [Smaug](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/smaug) - [StarCoder](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/gpt) - [T5](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/enc_dec) - [Whisper](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/whisper) * - Multi-Modal Models (5) - - [BLIP2 w/ OPT-2.7B](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal) - [BLIP2 w/ T5-XL](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal) - [CogVLM](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal)(6) - [Deplot](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal) - [Fuyu](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal) - [Kosmos-2](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal) - [LLaVA-v1.5-7B](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal) - [NeVA](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal) - [Nougat family](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal) Nougat-small, Nougat-base - [VILA](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal) ``` (1) INT8 SmoothQuant is not supported on SM70 and SM75.
(2) INT4 AWQ and GPTQ are not supported on SM < 80.
(3) INT4 AWQ and GPTQ with FP8 activations require SM >= 89.
(4) [Encoder-Decoder](https://github.com/NVIDIA/TensorRT-LLM/tree/main/main/examples/enc_dec) provides general encoder-decoder functionality that supports many encoder-decoder models such as T5 family, BART family, Whisper family, NMT family, and so on. (5) Multi-modal provides general multi-modal functionality that supports many multi-modal architectures such as BLIP family, LLaVA family, and so on. (6) Only supports bfloat16 precision. ```{note} Support for FP8 and quantized data types (INT8 or INT4) is not implemented for all the models. Refer to {ref}`precision` and [examples](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples) folder for additional information. ```